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LONG-TERM GOALS 
 
Real-time determination of the optical and bathymetric climate available for operation of various Navy 
and Coast Guard assets in the coastal zone using a mixture of AUV, ROV, surface-vessel, fixed 
moorings/towers, and air/space-borne observational assets. This includes advanced heat-budget 
modeling applicable to coastal regions, methods for early detection of K. brevis (red-tide) and other 
algal blooms, remote determination of optical properties (absorption and scattering) of the water, 
harmful algal blooms, depth and bottom albedo. These provide model inputs and validation data for 
predicting visibility and the performance of optical systems as well as heat budget and primary 
production models, useful in asset selection for Homeland Security operations. 
 
OBJECTIVES 
 
The development of optical methodologies valid for Case II coastal waters for the remote 
determination of water and bottom optical properties including visibility, water and bottom optical 
absorption, algal concentrations, bathymetry, bottom albedo, vegetation cover, and bottom structure 
are being pursued. These include interpretation of hyperspectral, high-resolution imagery from aircraft 
and satellites, development and deployment of suites of small instruments on remotely operated and 
autonomous underwater vehicles (ROVs, AUVs) and a multi-disciplinary network of moored sensors.  
Data are used in development/application of radiative transfer models and algorithms for predicting 
optical properties and extracting information from the remote data.  Effects of vertical structure in the 
optical properties (e.g. river plumes, suspended sediments) and turbidity must be recognized for the 
data retrievals to be accurate, and the instruments and methodologies necessary to quantify such 
structure are being developed and utilized on underwater vehicles and moorings. 
 
The focus for our work this year continues to be in direct response to the September 11 attacks on the 
United States and the call for increased attention to Homeland Security with an emphasis on Port 
Security.  We have accelerated our efforts toward the quantification of performance parameters for 
underwater imaging systems and for now-casting the optical properties of the water column at scales 
appropriate to application in Homeland Security strategies. 
 
APPROACH 
 
Models have been developed for inverting hyperspectral data from air- and space-borne sensors in 
vertically homogeneous waters to more accurately estimate absorption, back-scattering, and beam-
attenuation coefficients (e.g. see Lee et al. 2002, 2004; Liu et al. 2002; Carder et al. 2004, 2005; 
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Cannizzaro and Carder 2005), as well as bathymetry and bottom albedo (e.g. Carder et al. 2003 and 
PUBLICATIONS). We have also presented methodologies for advanced coastal-water heat budget 
modeling (Warrior et al. 2002; Warrior 2004; Warrior and Carder; 2005) and early detection of red-
tide and other algal blooms (Cannizzaro et al. 2004, 2005, Cannizzaro et al. submitted).  These can be 
used as initial or boundary conditions for heat-budget, primary production and visibility models and to 
predict where certain mine-counter-measure assets can productively be deployed given sensor-
performance models.  
 
To more accurately invert data from airborne, hyper-spectral sensors such as PHILLS, we have 
vicariously calibrated the sensor and atmospherically corrected the data with inversion provided by 
parameter optimization modified by a genetic code (Chen et al. 2004). This prevents the solution from 
being “trapped” in a local rather than a global minimum for each parameter. As such sensors and 
methods improve for more-turbid waters, utility for measuring denied-access regions increases.  
 
To invert coastal data from existing ocean-color satellites (e.g. SeaWiFS, MODIS, MERIS, etc.) that 
don’t provide hyperspectral data, a method was developed to identify pixels contaminated by bottom 
effects and to provide a first-order correction for bottom effects for waters at least 5m deep (Carder et 
al. 2005; Cannizzaro, Carder and Lee submitted). Using accurate, synthetic Rrs data, log-based root-
mean-square errors for backscattering were reduced from 47% to 6% and for chlorophyll (particle-
absorption proxy) were reduced from 28% to 16% by selecting algorithm bands that straddle the 
transparency window. Specifically, accurate data for wavelengths greater than about 615 nm are 
recommended.   
 
Water clarity, bathymetry, and bottom albedo are critical variables affecting optical searches for 
objects in the water column or on the bottom. Object contrast with the background optical fields (e.g. 
English et al. 2005) or its 3-dimensional shape (Carder et al. 2003) can be used in object-and bottom-
classification schemes. Using elastic and inelastic scattering and active and passive imaging systems, 
we are evaluating how system performance degrades with increased turbidity, range, and optical 
structure (e.g. layers) for a variety of bottom types (Hou et al, 2002) and beneath underwater 
structures, e.g. ship hulls (Reinersman and Carder, 2002; 2004). Sensor performance models require 
combinations of ambient-light models (Reinersman and Carder, 2004; Carder et al. 2005) and laser-
line-scanner models (Montes-Hugo et al. 2005; Montes-Hugo 2005). 
 
Several optical packages have been developed for deployment on ROVs and AUVs to measure the 
optical properties of the water column and bottom to provide an assessment of the accuracy of the 
model assumptions and retrieval values from air-borne sensors, and we have deployed these as part of 
the CoBOP and HYCODE field activities. Several [e.g. Bottom Classification and Albedo Package, 
BCAP, Real-Time Ocean Bottom Optical Topographer, (ROBOT), and the Mobile Inspection Platform 
(MIP)] have been developed and tested on ROVs or AUVs including our ROSEBUD remotely 
operated vehicle (ROV), the Ocean Explorer class autonomous underwater vehicles, and USF's Center 
for Ocean Technology (COT) ROVEX vehicle (Carder et al., 2001, 2003; Costello and Carder, 1997; 
Costello et al., 1998a, 1998b; Renadette et al., 1997, 1998). Validation of 2-D and 3-D environmental 
optical models for light fields beneath ships (Reinersman and Carder 2004), are tasks to which these 
systems are ideally suited and have been applied (Carder et al. 2005). 
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WORK COMPLETED 
 
Oceanography is inherently a multi-disciplinary science and our group is a team of oceanographers 
dedicated to developing optical methodologies that address real-world applications.  These efforts 
require acquisition of extensive field data (above and below the surface) and extensive modeling.  
Analysis and comprehensive interpretation of field data and model results require us to address 
physical, biological, chemical, and geological processes which affect water optics.  The range and 
success of our work, then, is most directly presented via our list of 30 publications (19 refereed) 
produced by our group during 2004 - 2005. Please refer to the PUBLICATIONS section below. 
 
RESULTS 
 
Elastic and inelastic 3-D images for inspection of ship hulls were acquired by inverting the ROBOT 
system (a prototype for the Mobile Inspection Platform) on our ROSEBUD ROV in the relatively 
turbid water (c532 ≈ 3.0/m) of Tampa Bay.  2-Way maximum ranges of 18 e-folding lengths were 
determined in the elastic mode and 12 e-folding lengths in the fluorescence mode using the Xybion 
intensified camera as a receiver.  Fluorescence-mode imagery would be most useful in highly 
scattering waters because of the elimination of on-line path radiance.  The fluorescence mode would 
also be useful, for example, in detecting a recently attached object (e.g. a limpet mine) on a ship hull 
since the recent object would not have sufficient algal growth to fluoresce. Figure 1 shows a 3-
dimensional fluorescence image acquired during the Submerged Target Aging Experiment (Stage).  
The (inverted) image is of the hull of a small boat to which a pair of targets were added each week.  
Note that the targets were painted flat black and would not necessarily reflect highly enough to be 
visualized in a reflective mode.  
 
 

Figure 1. A 3-dimensional laser-line image acquired in the fluorescence mode.  Note that the 
image is possible because of fluorescence of algal scum on the boat hull and aged targets.  

The targets consisted of sections of PVC pipe that were painted flat black and not likely to be 
visualized in a reflective mode. 
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Signal contributions from path radiance reduce the accuracy of ROBOT-derived albedos. Recently, we 
developed a Monte Carlo model of ROBOT performance to evaluate the fate of elastic photons in a 
nocturnal environment (Montes-Hugo et al. 2005; Figs. 2, 3). For use beneath ships or at depth in the 
ocean where ambient light is prevalent, the sensor model results will be added to results from the 3-D 
Hybrid Marine Optical Model (HyMOM; Reinersman and Carder 2004; Carder et al. 2005). They 
provide a means of selecting strategies for ROBOT sensor deployment and for data interpretation.  
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Figure 2. Schematic of ROBOT used in Monte Carlo simulations to optimize use in 
turbid waters. A laser fan is projected downward and observed from an angle. Bi-

static separation distance between source line and detector is variable. 
 
 
Red-tide blooms with chlorophyll a concentrations greater than 2-3 mg/m3 or 10,000-20,000 cells/liter 
can be discriminated and quantified from space-craft or aircraft ocean-color data by both chlorophyll-
specific backscattering and fluorescence (Cannizzaro et al. 2004, 2005).  Concentrations as high as 130 
mg/m3 were quantified by MODIS using fluorometric remote sensing. Large red tides can result in 
anoxic, black-water events as we observed in 2002 (Neeley et al. 2004; Hu et al. 2002), affecting not 
only breathing, but also visibility for swimmers. We observed red tides off Tampa Bay from January 
through August both remotely with MODIS and SeaWiFS, but also with R/V Subchaser cruises at both 
ends of the event. The August cruise produced black water data near the bottom, with near-anoxic 
conditions, low light, and anomalous pigment suites, absorbing in the near infrared. Research is 
continuing on this data set. 
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The Autonomous Marine Optical System (AMOS; Steward and Carder 2002) was set up on a piling in 
Bayboro Harbor where weekly validation data could be easily collected. Data such as those shown in 
Figure 4, are being evaluated by a student for a master’s thesis. The remote-sensing reflectance data 
provide IOPs by model inversions that are compared to AMOS IOP measurements and field samples 
collected nearby. Dry-wind events increase the turbidity but not the chlorophyll, with chlorophyll 
increasing some 3 days later. This suggests a nutrient release from suspended sediments containing 
little or no benthic diatoms or other algal cells. AMOS-type sensors can provide calibration and 
validation data for satellite and aircraft remote sensors, which is especially useful to help with 
atmospheric corrections in turbid, coastal waters where water-leaving radiance in the infrared is non-
zero.  

 
Figure 3. The path radiance is a minor contribution to the center, laser-line pixel, amounting to less 

than 20% even with a 5 m range in clear water (c = 0.22 m-1) and a 1 m range in turbid water (c = 
1.0 m-1). With multiple cross-track pixels, even this contribution can be estimated and corrected. 

Near-range baseline is less than 10% of peak value, allowing laser-line position to be detected and 
triangulated for 3-D imaging, and bottom albedo to be corrected for path radiance. 

 
Several very turbid rivers that we have sampled flow into Tampa Bay (Alafia, Hillsborough, Palm 
River) and the Gulf of Mexico (Caloosahatchee). These are “black-water” or CDOM-rich rivers, with 
CDOM absorption values at 400 nm sometimes reaching 20 m-1, detrital absorption values at 400 nm 
reaching 8 m-1, and chlorophyll a values reaching 60 mg m-3. These high values can be seasonal, and 
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vary widely. Remote sensing and modeling of these types of rivers can be performed to estimate 
visibility and light penetration, “cloaking” of certain operations, and sensor performances (e.g. Fig. 3). 
These rivers differ markedly from sediment-laden rivers such as the Mississippi inasmuch as visibility 
is typically absorption-limited rather than scattering- limited. This suggests that adequate source 
illumination at the absorption minimum of about 560 nm may permit operations requiring some visual 
acuity. 
 
Optical modeling of CDOM-rich waters poses a different problem than for most marine situations. 
CDOM fluorescence (usually considered negligible) can be so large that it affects Rrs spectra not only 
 at blue wavelengths (see Fig. 6), but also out to red wavelengths. Note that the fluorescence trace of 
the chlorophyll a fluorometer at 685 nm shown in Figure 7 varies inversely with salinity as does 
CDOM absorption, but varies inversely rather than directly with extracted chlorophyll a 
concentrations. The implication is that for CDOM fluorescence at 685 nm increases more rapidly than 
chlorophyll a fluorescence decreases when sampling going up the Alafia River away from the 
chlorophyll maximum at the mouth and toward the CDOM maximum at 0 psu salinity. A later test in a 
laboratory chlorophyll fluorometer of an aliquot of this river water, filtered through a 0.2 micron 
diameter filter, provided fluorescence values equivalent to about 2 mg m-3 chlorophyll a. 

  Autonomou  s Marine Optical 

  Sensor Network (AMOS) 
•  

Figure 4.  Above-water components 
of AMOS as deployed in the 

USF/Bayboro Harbor site.  The 
above-water radiometer is the gray 

box extending above the water to the 
left in this image. 
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The present model of fluorescence efficiency for marine CDOM (Hawes 1992) used in Hydrolight 
(Mobley 1994) does not provide emission values for excitation values longer than 490 nm, the limit 
measured by the apparatus used by Hawes. Whether riverine CDOM differs significantly from marine 
CDOM or a simple extension of the Hawes (1992) curves is required to explain this phenomenon 
needs evaluation. Without an adequate understanding of CDOM fluorescence for CDOM-rich waters, 
model inversions of Rrs curves to derive inherent and apparent optical properties for such waters (e.g. 
Fig. 5b) will be unsuccessful or inaccurate. 
 
IMPACT/APPLICATIONS 
 
We discussed our use of active and passive stimulation of bottom fluorescence from natural, algae-rich 
surfaces and the indication that regions devoid of fluorescence were observed for animals and recently 
deployed, man-made objects. We have continued this work for application to inspecting both ship hulls 
and vertical underwater structures (e.g. pilings, sea walls) that are of interest in Port Security. Ships 
spending considerable time in turbid waters are found to lose their fluorescence signature, however, so 
the optical history of a ship can affect the interpretation of these signatures. 
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Figure 5. a) Down-welling irradiance, sky radiance, and water radiance measured by AMOS; b) 
remote-sensing reflectance (Rrs) derived from (a) and the absorption and backscattering constituents 
derived by model inversion (e.g. Lee et al. 1999). Note that AMOS uses a common spectrometer with 
three fiber-optic pathways that are switched automatically. This provides a smooth Rrs curve for the 

ratios, even over the jagged Fraunhofer lines apparent in (a). The underwater sensors of AMOS 
contribute diffuse attenuation, beam attenuation and chlorophyll and CDOM fluorescence values. 
Large-scale maps of water properties and bottom depth and albedo are critical in the assessment of 
visibility, navigability, and underwater sensor performance.  In the same vein, the ability to detect 

harmful algal blooms from space or aircraft-borne sensors is important to both 
 economic and security concerns. 
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TRANSITIONS 
 
Our red-tide detection algorithm has been transitioned to NOAA Coast Watch. 
 
RELATED PROJECTS 
 
This project has a close association with the ROBOT project (Kaltenbacher et al., this volume).  
ROBOT is an AUV/ROV deployed, laser-line imaging system designed to produce 3-dimensional 
maps of underwater surfaces (bottoms, seawalls, hulls, etc.)  We are utilizing our methodologies and 
hardware to quantify and predict performance parameters for both the on-line and fluorescence (see 
RESULTS) modes of operation of the ROBOT systems well as to develop algorithms for automatic 
(computerized) target recognition. 
 
We are also collecting field data regarding the structure of the underwater light field around objects 
(e.g. ship and seawall shadows) under various environmental conditions for the validation of the 
“Hybrid Modular Optical Model To Predict 2-D and 3-D Environments in Ports…” (HyMOM, ONR, 
Carder and Reinersman, this volume). 
 
We are actively supporting three ONR projects headed by John Kloske, USF Center for Ocean 
Technology, and Scot Tripp, US Coast Guard Research and Development Center, toward utilizing our 
methodologies along with imaging sonar toward improving fleet and Homeland Security.  These 
projects include Advanced Underwater Port Security Systems and the Development and Evaluation of 
the Mobile Inspection Platform, first deployed on our ROSEBUD ROV.  The ROV has also been used 
for evaluation deployments of the ISS ranging camera and Echoscope and Tritech Mini-king imaging 
sonars (Steve Lawrance, Subsea Technologies, Inc.) as well as the Coda Echoscope 1600 3-D Real 
Time acoustic sonar (Angus Ludsdin, Codaoctopus, Ltd.) 
 
Efforts within our group toward model inversion (funded through ONR and NASA) utilizing remote-
sensing reflectance, provides bathymetry and water optical properties.  Most recently, efforts have 
been focused on providing sea-truth and image interpretation for the PHILLS hyperspectral imaging 
sensor owned by NRL Washington (Curtiss Davis) and operated by Paul Bissett, Florida Evironmental 
Research Institute. 
 
Finally, this project benefits from the database acquired during the ONR programs Coastal Benthic 
Optical Properties (CoBOP, Carder and Costello) and HyCODE field campaigns and multi-agency 
program ECOHAB. 
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